P=NP之TSP问题解

吾志所向,一往無前

Posted by Zeusro on June 17, 2025

多维数学假说证明过程

传统立体直角坐标系

1:n'= 0
2:t = 0
3:1 = 1 && 0 = 0 && x=x && y=y && z=z

对常数时间t求导得到0。

传统立体直角坐标系是t=0的特殊状态。

这种前提下,P=NP问题不可解。

基于时间作为第一维度的多维宇宙

1:t≠0
2:1=n ⇔ n=1
3:P=P ⇔ P=NP

时间不为0时,表示千变万化的多维宇宙。

在多维宇宙中 P=NP 问题可以简化为 P=P的问题,将所有的非线性规划,转换为基于n维线段的线性规划,因此问题可解。

贪婪搜索是P=NP问题的近似最优解

image

源代码

n < n+1 → P≠NP

按照多维数学假说的基本论述,P=NP在当前的数学符号系统里面是不可解的。

所以,贪婪搜索只能成为近似最优解,之所以近似,第一点在于解法不完全(用球面公式模拟),距离的计算没有完全贴合原意(时间)。

第二点是博弈论的一种理念:“局部最优解不是全局最优解”。

贪婪搜索算法的基本策略是:

“从当前节点出发,每次选择边权最小(或收益最大)的那个相邻节点,作为下一步。”

反驳的论述是

局部最优 ≠ 全局最优。用图论解释,贪婪算法每一步只看当前局部的边权大小,但这种局部最优选择,可能在后面导致走到代价更高的路径,错过了更优的全局路径。

不存在全局最优解

1
2
1: n < n + 1
2:$\not\exists x^* \in S,\ \forall x \in S,\ f(x^*) \leq f(x)$

完整数学论述见 拓展博弈论

目前我对这个问题也有点模糊。但我初步认为“不存在所谓的全局最优解”。解释这个问题,需要回到基本定义。

局部最优解:对某个参与者来说,在当前其他人的策略不变的前提下,他无法通过改变自己的策略而获得更好结果。即:纳什均衡的定义。

全局最优解:从所有参与者整体角度来看,能够达到总效用最大、或集体最优的策略组合,通常是帕累托最优解、社会最优或合作博弈的解。

对于这种概念。我觉得是“缺斤少两”的。从历史的角度上看,不存在放之四海而皆准的永恒真理。任何论述都需要在满足某种前提之下才能成立。也就是说不存在所谓的“全局最优解”。

根据n维数学假说(https://gitee.com/Zeusro/math ),3维世界在5维世界里面。从txyz(传统四维)上看,三维世界只是一个点。

在立体直角坐标系中,物体水平移动的通常定性为X轴。但在我看来X轴是时间t才对。n之上,还有n+1维。因此无法避n+1维的干涉。

举个例子,我和Tom在下象棋。旁边一只猫冲过来,把Tom的元帅叼走了。

这样,无论我和Tom采取什么策略都没有意义了,因为要先把猫猫找回来。。

似乎可以直接使用哥德尔不完备定理去解释没有全局最优解。

在我看来,局部最优解和全局最优解是相对存在的。对于任何局中人(player)而言,由于能力有限,考虑的维度永远只能无限逼近“现实”。自以为的“全局最优解”只能是“局部最优解”。这也有点像大卫·休谟(David Hume)的观念,理性推理只是一种感觉

全局最优解,只有 n+1 维的存在才有最终解释权。因此回到原本的博弈环境,就是“在当前维度,不存在全局最优解”。能找到局部最优解就不错了,顺势而为,别想太远。

用n维数学表示,就非常简单:n < n+1 。

结论

踏上旅程,寻找真我 / Travel and find real me

通过历练,明心见性 / Pass the test and then see the truth

このふざけたルールにだって

那些未能置我於死地的苦難,只會讓我變得強大

golang proves P=NP

image

xyz is the special case in n universe.

1:t=0
2:x=x && y=y && z=z && 1=1
But we are actually living in the n universe.

In the n universe:

1:t≠0
2:1=n ⇔ n=1
3:P=P ⇔ P=NP
1=n,n=1,P=NP reduces to P=P.So the P=NP problem could be solved.

For example:

1=n : I am one of the humans.

n=1 : “Compress” all the data to 1.

1
2
3
4
5
6
type N struct {
    Sky            
    Ground         
    YoungAndBeautiful 
    Others          
}

Example: Traveling Salesman Problem (TSP)

Problem: A salesman needs to visit multiple cities, each exactly once, and return to the starting point. Given the distances between each pair of cities, the question is: Is there a path whose total length does not exceed K?

Answer: In fact, the formulation of this problem is flawed. The actual problem should be framed as finding the fastest path. Since time is considered as the one-dimensional world, the problem can be transformed: it doesn’t matter which city you start from. As long as you always go to the next nearest city after arriving at the current one, the problem becomes solvable as a greedy search for the shortest path.

For the TSP problem, the length measurement standard should be time, not distance in the intuitive sense.

In 3-dimensional Euclidean space, the shortest path between two points is a straight line.

In n dimensions, a segment does not necessarily follow a 3D straight line.

In N-dimensional space, the length of a segment is measured based on time, not distance.

An N-dimensional line segment is a special case at t = 0 in 3D space. Because it lacks the dimension of time, it becomes a 3D line segment — what we intuitively understand as “the shortest distance between two points is a straight line.”

In dimensions higher than three, the criterion for measuring the length of a line segment is time — the segment with the shortest duration is the shortest N-dimensional line segment.

I think I have proved P=NP problem from math.

Other 20%,time will tell.

The 3D world is just a point when t = 0 (𝑑𝑛⁄𝑑𝑡 = 0)

The 3D world is just a point in n universe——a special case at t = 0.

In my n-dimensional math hypothesis , t constantly shifts, so n = 1 and n ≠ 1 hold at once.

image

This seems paradoxical in 3D, but not in n.

    Where there is a will there's a way

source

1
One is all,all in one.